Homework 8- MATH 2L03

Winter 2016

- 1. Use the definition of area under the curve to express the area under $f(x) = \sqrt[4]{x}$ from 0 to 16. Don't evaluate the limit.
- 2. Express the limit as a definite integral on the given interval.
 - a) $\lim_{n\to\infty} \sum_{i=1}^{n} x_i \sin x_i \Delta x$, on $[0,\pi]$.
 - b) $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{x_i}{1+x_i} \Delta x$, on [1,5].
- 3. Evaluate the following integrals interpreting them in terms of areas.
 - a) $\int_{-1}^{2} |x| dx$

- b) $\int_{-2}^{3} (1-2x) dx$
- 4. If $\int_1^6 f(x)dx = 13$ and $\int_{-3}^1 f(x)dx = 11$. Find $\int_{-3}^6 f(x)dx$.
- 5. If $\int_3^{10} f(x)dx = 9$ and $\int_3^{10} g(x)dx = -3$, find $\int_3^{10} [2f(x) + 6g(x)]dx$.
- 6. Evaluate the following integrals:

a)
$$\int_0^2 (6x^2 - 4x + 5) dx$$

g)
$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$

g)
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
 m)
$$\int e^x \sqrt[5]{9 + e^x} dx$$

h)
$$\int_0^2 y^2 \sqrt{1 + y^3} dy$$
 n)
$$\int x^6 + 6^x dx$$

i)
$$\int_0^{\frac{\pi}{4}} (1 + \tan t)^3 \sec^2 t dt$$

j)
$$\int \frac{\sec^2 u}{3 + \tan u} du$$
 o)
$$\int \frac{\log_6 x}{x} dx$$

k)
$$\int \sin (e^{x+2}) e^x dx$$
 p)
$$\int e^{\tan \theta} \sec^2 \theta d\theta$$

b)
$$\int_0^2 x(2+x^5)dx$$

h)
$$\int_0^2 y^2 \sqrt{1+y^3} \, dy$$

n)
$$\int x^6 + 6^x dx$$

c)
$$\int_{-2}^{-1} \left(4y^3 + \frac{2}{y^3} \right) dy$$

d) $\int_0^{\pi/4} \frac{1 + \cos^2 \theta}{\cos^2 \theta} d\theta$

i)
$$\int_0^{\infty} (1 + \tan t)^3 \sec^2 t$$

o)
$$\int \frac{\log_6 x}{x} dx$$

d)
$$\int_0^{\pi/4} \frac{1 + \cos^2 \theta}{\cos^2 \theta} d\theta$$

k)
$$\int \sin\left(e^{x+2}\right) e^x dx$$

$$p) \int e^{\tan \theta} \sec^2 \theta \ d\theta$$

f)
$$\int \sec^2(2\theta) d\theta$$

e) $\int x \sin(x^2) dx$

$$1) \int \frac{e^{1/x^2}}{x^3} dx$$

q)
$$\int \frac{\cos(\ln u)}{u} du$$

7. Verify by differentiation that the formula is correct

(a)
$$\int \frac{x}{\sqrt{x^2 + 1}} dx = \sqrt{x^2 + 1} + C$$

(b)
$$\int x \cos x dx = x \sin x + \cos x + C.$$

- 8. A population of a certain town is increasing at a rate of $t^2 + 2t + 3$ people per year. Find the increase of population during the next 10 years. If the current population is 3000, what will be the population 10 years later.
- 9. The marginal cost of a production process is $1.5x^2 10x + 100$ (measured in dollars), where x is the number of units produced. The fixed cost i.e. the cost when 0 units are produced, is \$50. Find the cost function and use it to compute the cost of producing 20 units.
- 10. Use the Fundamental theorem of Calculus to find the derivative of the following functions

a)
$$g(x) = \int_{35}^{x} \sqrt{t^2 + 1} \ dt$$

b)
$$h(x) = \int_0^{x^4} \cos t \, dt$$

a)
$$g(x) = \int_{35}^{x} \sqrt{t^2 + 1} dt$$
 b) $h(x) = \int_{0}^{x^4} \cos t dt$ c) $p(x) = \int_{x}^{x^2} \sqrt{\sin^2 y + 2} dy$

11. Evaluate

$$\int_{-3}^{3} x^4 \tan x \ dx$$

Hint: This is a symmetric integral and tan(-x) = -tan x.

12. Suppose f(2)=2, f(4)=3, f'(2)=5 and f'(4)=3 and f'' is continuous. Find

$$\int_2^4 x f''(x) \ dx$$

13. *Use substitution followed by integration by parts to evaluate the integral

$$\int \cos \sqrt{\theta} \ d\theta$$

14. If f' is continuous on [a, b], show that

$$2\int_{a}^{b} f(x)f'(x)dx = [f(b)]^{2} - [f(a)]^{2}$$

- 15. If f is continuous and $\int_0^9 f(x)dx = 4$, find $\int_0^3 u f(u^2)du$
- 16. Find the average value of the function on the given interval

a)
$$f(x) = 4x - x^2$$
, $[0, 4]$

b)
$$h(t) = \frac{3}{(1+t)^2}$$
, [1,6]